Wormuth Wohnbau GmbH

Bauvorhaben:

Langemattstraße, Neuried-Dundenheim

Machbarkeitsstudie zur künftigen Entwässerung

08.12.2021

Aufgabenstellung

Mit der Errichtung von drei Wohnhäusern auf den Flurstücken 246/5, 246/6 und

249 an der Langemattstraße in Neuried-Dundenheim sollen die Möglichkeiten der

künftigen Entwässerung untersucht und geprüft werden.

2 Prüfung

Aufgrund der Höhe des anstehenden Grundwassers mit einem mittleren, höchsten

Grundwasserstand von ca. 146 m+NN und der Höhe des Bestandsgeländes reicht

die Überdeckung zur Versickerung nicht aus.

Vorgeschlagen wird die Einleitung in die öffentliche Kanalisation.

Aufgrund des erhöhten Versiegelungsgrades der Flächen durch die geplanten

Wohnhäuser, wird zukünftig eine größere Menge Niederschlagswasser gefasst und

dem öffentlichen Netz zugeführt.

Um eine Überlastung der öffentlichen Kanalisation zu verhindern, wird der Abfluss

auf den bestehenden begrenzt. Der bestehende Abfluss dient somit als Drosselab-

fluss.

Um ein Regenereignis der Jährlichkeit T=10a schadlos abzuleiten, muss ein Rück-

halt von 19m³ geschaffen werden (vgl. Anlage).

3 Ausführung

Zum Rückhalt des anfallenden Niederschlagswassers wird vorgeschlagen eine Lei-

tung der Größe DN700 in der geplanten Stichstraße herzustellen. Weiterhin schla-

gen wir vor, auf ein Drosselorgan zu verzichten, um das angrenzende Kanalnetz zu

entlasten.

Aufgestellt: Achern, den 08.12.2021

M.Sc. Cornelius Dellwisch

Projekt: 7346-T. Machbarkeitsstudie zur künftigen Entwässerung der Flurstücke 249, 246/5 und 246/6

07.12.2021

Anlage 3 Bemessung der abflusswirksamen Fläche und des <u>Drosselabflusses</u>

542,56 [m²]

1 Befestigte Fläche

Garage

Haus

Fläche	A_Garage	22,35 [m²]
Anzahl	n	6 [-]
Summe	A_Garagen	134,1 [m²]
Fläche	A_Haus 1	175,7 [m²]
Fläche	A_Haus 2	183,43 [m²]
Fläche	A_Haus 3	183,43 [m²]

A_Häuser

2 Droselabfluss

Summe

Niederschlagsereignis	T=1a, D=15min	125,6	60 [l/s*ha]
Versiegelungsgrad		20.2	[%]
Fläche Fläche	A_gesamt A_vorh. Dachflächen	0.21566 0,0	[ha] 04 [ha]
Abfluss	Q	5,4698	38 [l/s]

Projekt: 7346-T. Machbarkeitsstudie zur künftigen Entwässerung der Flurstücke 249, 246/5 und 246/6 07.12.2021

Anlage 3 Bemessung des Rückhaltevolumens nach Arbeitsblatt DWA-A 117

Anwendung des einfachen Verfahrens für ein Regenrückhalteraum (RRR) nach ATV-DWA-A 117

1	Bemessungsgrundlagen			
	Fläche des kanalisierten EZG	AE,K	0,22 [ha]	
	Fläche_Häuser	AE,H	0,05 [ha]	
	Fläche_Garagen	AE,G	0,01 [ha]	
	Fläche_Außenbereich&Wege	AE,A	0,07 [ha]	
	Abflussbeiwert	ψm,H	1,00 [-]	4
	Abflussbeiwert	ψm,G	0,50 [-]	siehe Anlage
	Abflussbeiwert	ψm,V	0,50 [-]	Anl
	mittlerer Abflussbeiwert	ψm,b	0,67 [-]	he
	mittlerer Abflussbeiwert	ψm,b	0,20 [-]	Sie Sie
	Trockenwetterabfluss	Qt24	0 [l/s]	
	vorgegebene Drosselabflußspende	qdr,k	25,26 [l/(s*ha)]	
	vorgegebene Überschreitungshäufigkeit	n	0,1 [n/a]	(T = 10 a)
2	Ermittlung der undurchlässigen Fläche			
	$Au = AE,b * \psi m,b + AE,nb * \psi m,nb$	Au	0,09 [ha]	
3	Ermittlung der Drosselabflußspenden			
	Qdr,max = qdr,k * AE,k	Qdr,max	5,45 [l/s]	
	qdr,r,u = (Qdr - Qt24)/Au	qdr,r,u	58,29 [l/(s*ha)]	
4	Ermittlung des Abminderungsfaktors nach E	Bild 3		
		fA	0,98 [-]	
5	Festlegung des Zuschlagsfaktors			
		fZ	1,17 [-]	
6	Bestimmung der Niedeschlagshöhen aus Ko	ostra		siehe Anlage 5

Projekt: 7346-T. Machbarkeitsstudie zur künftigen Entwässerung der Flurstücke 249, 246/5 und 246/6 07.12.2021

7 Anwendung von Gleichung 2 für verschiedene Dauerstufen

Vs,u = (rD,n - qdr,r,u) * D * fz * fa * 0,06 Vs,u [m³/ha]

Dauer stufe D		Niederschlagshöh e h _n für n = 0,2/a	Zugehörige Regenspende rd,n	Summe der Drosselabfluß spenden q _{dr,r,u}	Differenz zw. r und qdr,r,u	spezifisches Speicher- volumen Vs,u	Speicher- volumen Verf	Entleerung szeit
[h]	[min]	[mm]	[l/(s*ha)]	[l/(s*ha)]	[l/(s*ha)]	[m³/ha]	[m³]	[h]
	5	11,8	393,3	58,29	335,01	115,24	11	0,5
	10	17,2	286,7	58,29	228,41	157,14	15	0,7
	15	21,0	233,3	58,29	175,01	180,60	17	0,9
	20	23,9	199,2	58,29	140,91	193,88	18	0,9
0,5	30	28,2	156,7	58,29	98,41	203,11	19	1,0
	45	32,5	120,4	58,29	62,11	192,29	18	0,9
1,0	60	35,7	99,2	58,29	40,91	168,88	16	0,8
1,5	90	37,6	69,6	58,29	11,31	70,04	7	0,3
2,0	120	39,0	54,2	58,29	-4,09	-33,74	-3	-0,2
3,0	180	41,1	38,1	58,29	-20,19	-249,99	-23	-1,2
4,0 6,0	240 360	42,7 45,1	29,7 20,9	58,29 58,29	-28,59 -37,39	-472,01 -925,96	-44 -87	-2,2 -4,4
9,0	540	47,7	14,7	58,29	-43,59	-1619,27	-151	-7,7
12,0	720	49,7	11,5	58,29	-46,79	-2317,53	-217	-11,0

8 Bestimmung des erforderlichen Rückhaltevolumens

 $V = V_{S,u,max} * A_u$ V_{max} 19 [m³]